

High Current Ferrite Chip Inductor (Lead Free)

CMPI252010UF-2R2MT01

1. Features

1. 2.5x2.0 mm and 1 mm in height (very compact size): CAE and fine printing technology made this compact size possible
2. Stable minimum DC resistance in the class.
3. High speed mounting: Using SMT mounter makes less than a second mounting possible.
4. Excellent mounting strength by SMD chip making.
5. Reduced noise over 2/3 of coil inductor by optimal design of CAD
6. Completely lead-free product and support lead-free solder.
6. Operating Temperature: -55~+105°C (Including self-temperature rise)

2. Dimensions

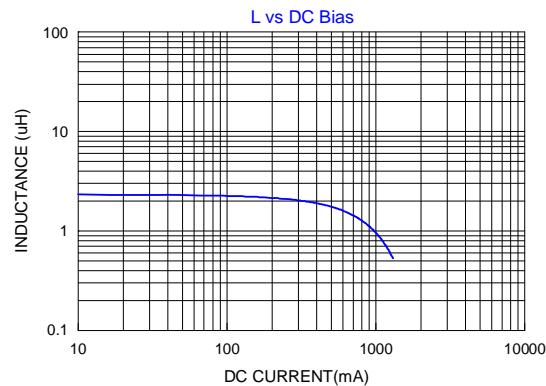
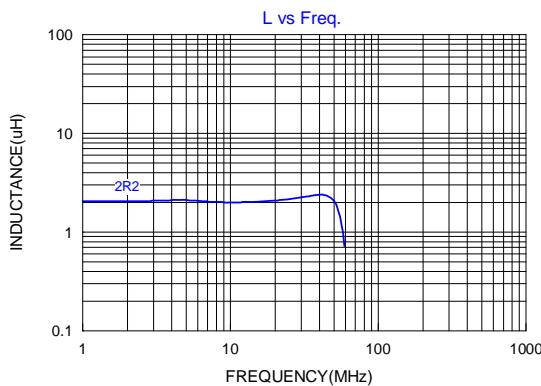
Chip Size				
Series	A(mm)	B(mm)	C(mm)	D(mm)
252010	2.5±0.2	2.0±0.2	1.0max.	0.5±0.3

3. Part Numbering**CMPI 252010 UF - 2R2 M T01**

A	B	C	D	E	F
A: Series					
B: Dimension					
C: Material					
D: Inductance					
E: Inductance Tolerance					
F: Category Code					

A x B x C
Lead Free Material
2R2=2.2uH
M=±20%

4. Specification



Tai-Tech Part Number	Inductance (uH)	Test Frequency (MHz)	DCR (Ω)		I rms (mA) max	I sat (mA) typ.
			max.	typ.		
CMPI252010UF-2R2MT01	2.2±20%	1	0.09	0.075	1100	600

Note:

I rms : Based on temperature rise ($\Delta T : 40^\circ\text{C}$ typ.)
I sat : Based on inductance change ($\Delta L/L : \leq -30\%$ @ ambient temp. 25°C)

■ Inductance-Frequency Characteristics

■ Inductance VS DC Bias Current

