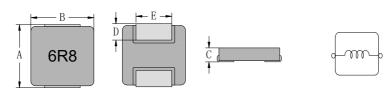
SMD Power Inductor


1. Features

- 1. Low loss realized with low DCR.
- 2. High performance realized by metal dust core.
- 3. Ultra low buzz noise, due to composite construction.
- 4. 100% Lead(Pb)-Free and RoHS compliant.

2. Applications

Commercial applications.

3. Dimensions

Series	A(mm)	B(mm)	C(mm)	D(mm)	E(mm)
THMA040HS	4.3±0.2	4.1±0.2	0.7±0.1	0.8±0.25	2.0±0.2

4. Part Numbering

THMA	040H	S	-	6 R 8	MN
А	В	С		D	E
C: Typ D: Ind	nension	rance		BxC Standa 6R8=6 M=±20 Markir	5.8uH

5. Specification

Part Number	Inductance	I rms (A)		I sat (A)		DCR (mΩ)	
	L0 (uH)±20%	Тур Мах Тур		Тур	Max	Тур	Max
THMA040HS-5R6MN	5.6	1.7	1.6	2.3	1.9	250	300
THMA040HS-6R8MN	6.8	1.6	1.5	2.2	1.8	260	312
THMA040HS-100MN	10.0	1.4	1.2	1.6	1.4	349	384

Note:

1. Test frequency : Ls : 100KHz /1.0V.

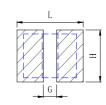
2. All test data referenced to 25° C ambient.

3. Testing Instrument(or equ): Agilent 4284A, E4991A, 4339B, KEYSIGHT E4980A/AL, chroma3302, 3250, 16502.

4. Heat Rated Current (Irms) will cause the coil temperature rise approximately ΔT of $40^\circ\! {\rm C}$

5. Saturation Current (Isat) will cause L0 to drop approximately 30%.

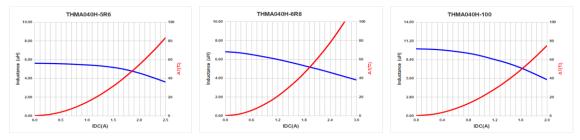
6. The part temperature (ambient + temp rise) should not exceed 125 °C under worst case operating conditions. Circuit design, component, PCB trace size and thickness, airflow and other cooling provisions all affect the part temperature. Part temperature should be verified in the end application.


7. Irms Testing : Temperature rise is highly dependent on many factors including pcb land pattern, trace size, and proximity to other components.

Therefore temperature rise should be verified in application conditions.

8. Rated DC current: The lower value of Irms and Isat.

Recommend PC Board Pattern



L(mm)	G(mm)	H(mm)		
5.2	2.2	2.3		
Nets 4 DOD laws this referred to star dead IDO 7054D				

Note: 1.PCB layout is referred to standard IPC-7351B 2. The above PCB layout reference only.

3. Recommend solder paste thickness at 0.12mm and above.

6. Typical Performance Curves

